Investigation on ultrasound images for detection of fetal congenital heart defects

Author:

S SatishORCID,Rufus N Herald AnanthaORCID

Abstract

Abstract Congenital heart defects (CHD) are one of the serious problems that arise during pregnancy. Early CHD detection reduces death rates and morbidity but is hampered by the relatively low detection rates (i.e., 60%) of current screening technology. The detection rate could be increased by supplementing ultrasound imaging with fetal ultrasound image evaluation (FUSI) using deep learning techniques. As a result, the non-invasive foetal ultrasound image has clear potential in the diagnosis of CHD and should be considered in addition to foetal echocardiography. This review paper highlights cutting-edge technologies for detecting CHD using ultrasound images, which involve pre-processing, localization, segmentation, and classification. Existing technique of preprocessing includes spatial domain filter, non-linear mean filter, transform domain filter, and denoising methods based on Convolutional Neural Network (CNN); segmentation includes thresholding-based techniques, region growing-based techniques, edge detection techniques, Artificial Neural Network (ANN) based segmentation methods, non-deep learning approaches and deep learning approaches. The paper also suggests future research directions for improving current methodologies.

Publisher

IOP Publishing

Reference131 articles.

1. A research review on fetal heart disease detection techniques;Someshwaran,2022

2. An ultrasound image enhancement method using local gradient based fuzzy similarity;Binaee;Biomed. Signal Process. Control,2014

3. Ultrasound Imaging;Paul,2002

4. Image and signal processing in diagnostic ultrasound imaging;Hedrick;Journal of Diagnostic Medical Sonography,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3