Effect of overdispersion of lethal lesions on cell survival curves

Author:

Loan MORCID,Bhat A

Abstract

Abstract The linear-quadratic (LQ) model is the most commonly used mechanism to predict radiobiological outcomes. It has been used extensively to describe dose-response in vitro and in vivo. There are, however, some questions about its applicability in terms of its capacity to represent some profound mechanistic behaviour. Specifically, empirical evidence suggests that the LQ model underestimates the survival of cells at low doses while overestimating cell death at higher doses. It is believed to be driven from the usual LQ model assumption that radiogenic lesions are Poisson distributed. In this context, we use a negative binomial (NB) distribution to study the effect of overdispersion on the shapes and the possibility of reducing dose-response curvature at higher doses. We develop an overdispersion model for cell survival using the non-homologous end-joining (NHEJ) pathway double-strand break (DSB) repair mechanism to investigate the effects of the overdispersion on probabilities of repair of DSBs. The error distribution is customised to ensure that the refined overdispersion parameter depends on the mean of the distribution. The predicted cell survival responses for V79, AG and HSG cells exposed to protons, helium and carbon ions are compared with the experimental data in low and high dose regions at various linear energy transfer (LET) values. The results indicate straightening of dose-response and approaching a log-linear behaviour at higher doses. The model predictions with the measured data show that the NB modelled survival curves agree with the data following medium and high doses. Model predictions are not validated at very tiny and very high doses; the approach presented provides an analysis of mechanisms at the microscopic level. This may help improve the understanding of radiobiological responses of survival curves and resolve discrepancies between experimental and theoretical predictions of cell survival models.

Publisher

IOP Publishing

Subject

General Nursing

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3