Omnidirectional endpoint force control through functional electrical stimulation

Author:

Sierotowicz MarekORCID,Castellini ClaudioORCID

Abstract

Abstract Objective. In recent years, Functional Electrical Stimulation has found many applications both within and outside the medical field. However, most available wearable FES devices are not easily adaptable to different users, and most setups rely on task-specific control schemes. Approach. In this article, we present a peripheral stimulation prototype featuring a compressive jacket which allows to easily modify the electrode arrangement to better fit any body frame. Coupled with a suitable control system, this device can induce the output of arbitrary forces at the end-effector, which is the basis to facilitate universal, task-independent impedance control of the human limbs. Here, the device is validated by having it provide stimulation currents that should induce a desired force output. The forces exerted by the user as a result of stimulation are measured through a 6-axis force-torque sensor, and compared to the desired forces. Furthermore, here we present the offline analysis of a regression algorithm, trained on the data acquired during the aforementioned validation, which is able to reliably predict the force output based on the stimulation currents. Main results. Open-loop control of the output force is possible with correlation coefficients between commanded and measured force output direction up to 0.88. A twitch-based calibration procedure shows significant reduction of the RMS error in the online control. The regression algorithm trained offline is able to predict the force output given the injected stimulation with correlations up to 0.94, and average normalized errors of 0.12 RMS. Significance. A reliable force output control through FES is the first basis towards higher-level FES force controls. This could eventually provide full, general-purpose control of the human neuromuscular system, which would allow to induce any desired movement in the peri-personal space in individuals affected by e.g. spinal cord injury.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Nursing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Omnidirectional endpoint force control through functional electrical stimulation;Biomedical Physics & Engineering Express;2023-09-13

2. Combining FES and Exoskeletons in a Hybrid Haptic System for Enhancing VR Experience;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3