Further investigation of 3D dose verification in proton therapy utilizing acoustic signal, wavelet decomposition and machine learning

Author:

Yao Songhuan,Hu Zongsheng,Xie Qiang,Yang Yidong,Peng HaoORCID

Abstract

Abstract Online dose verification in proton therapy is a critical task for quality assurance. We further studied the feasibility of using a wavelet-based machine learning framework to accomplishing that goal in three dimensions, built upon our previous work in 1D. The wavelet decomposition was utilized to extract features of acoustic signals and a bidirectional long-short-term memory (Bi-LSTM) recurrent neural network (RNN) was used. The 3D dose distributions of mono-energetic proton beams (multiple beam energies) inside a 3D CT phantom, were generated using Monte-Carlo simulation. The 3D propagation of acoustic signal was modeled using the k-Wave toolbox. Three different beamlets (i.e. acoustic pathways) were tested, one with its own model. The performance was quantitatively evaluated in terms of mean relative error (MRE) of dose distribution and positioning error of Bragg peak ( Δ B P ), for two signal-to-noise ratios (SNRs). Due to the lack of experimental data for the time being, two SNR conditions were modeled (SNR = 1 and 5). The model is found to yield good accuracy and noise immunity for all three beamlets. The results exhibit an MRE below 0.6% (without noise) and 1.2% (SNR = 5), and Δ B P below 1.2 mm (without noise) and 1.3 mm (SNR = 5). For the worst-case scenario (SNR = 1), the MRE and Δ B P are below 2.3% and 1.9 mm, respectively. It is encouraging to find out that our model is able to identify the correlation between acoustic waveforms and dose distributions in 3D heterogeneous tissues, as in the 1D case. The work lays a good foundation for us to advance the study and fully validate the feasibility with experimental results.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3