Author:
Lang Yankun,Jiang Zhuoran,Sun Leshan,Xiang Liangzhong,Ren Lei
Abstract
Abstract
Objective. Protoacoustic imaging showed great promise in providing real-time 3D dose verification of proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe artifacts, which impairs its accuracy for dose verification. In this study, we developed a hybrid-supervised deep learning method for protoacoustic imaging to address the limited view issue. Approach. We proposed a Recon-Enhance two-stage deep learning method. In the Recon-stage, a transformer-based network was developed to reconstruct initial pressure maps from raw acoustic signals. The network is trained in a hybrid-supervised approach, where it is first trained using supervision by the iteratively reconstructed pressure map and then fine-tuned using transfer learning and self-supervision based on the data fidelity constraint. In the enhance-stage, a 3D U-net is applied to further enhance the image quality with supervision from the ground truth pressure map. The final protoacoustic images are then converted to dose for proton verification. Main results. The results evaluated on a dataset of 126 prostate cancer patients achieved an average root mean squared errors (RMSE) of 0.0292, and an average structural similarity index measure (SSIM) of 0.9618, out-performing related start-of-the-art methods. Qualitative results also demonstrated that our approach addressed the limit-view issue with more details reconstructed. Dose verification achieved an average RMSE of 0.018, and an average SSIM of 0.9891. Gamma index evaluation demonstrated a high agreement (94.7% and 95.7% for 1%/3 mm and 1%/5 mm) between the predicted and the ground truth dose maps. Notably, the processing time was reduced to 6 s, demonstrating its feasibility for online 3D dose verification for prostate proton therapy. Significance. Our study achieved start-of-the-art performance in the challenging task of direct reconstruction from radiofrequency signals, demonstrating the great promise of PA imaging as a highly efficient and accurate tool for in
vivo 3D proton dose verification to minimize the range uncertainties of proton therapy to improve its precision and outcomes.
Funder
National Institutes of Health
National Cancer Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献