Deep-learning-based image segmentation for image-based computational hemodynamic analysis of abdominal aortic aneurysms: a comparison study

Author:

Lyu Zonghan,King Kristin,Rezaeitaleshmahalleh Mostafa,Pienta Drew,Mu Nan,Zhao Chen,Zhou WeihuaORCID,Jiang JingfengORCID

Abstract

Abstract Computational hemodynamics is increasingly being used to quantify hemodynamic characteristics in and around abdominal aortic aneurysms (AAA) in a patient-specific fashion. However, the time-consuming manual annotation hinders the clinical translation of computational hemodynamic analysis. Thus, we investigate the feasibility of using deep-learning-based image segmentation methods to reduce the time required for manual segmentation. Two of the latest deep-learning-based image segmentation methods, ARU-Net and CACU-Net, were used to test the feasibility of automated computer model creation for computational hemodynamic analysis. Morphological features and hemodynamic metrics of 30 computed tomography angiography (CTA) scans were compared between pre-dictions and manual models. The DICE score for both networks was 0.916, and the correlation value was above 0.95, indicating their ability to generate models comparable to human segmentation. The Bland-Altman analysis shows a good agreement between deep learning and manual segmentation results. Compared with manual (computational hemodynamics) model recreation, the time for automated computer model generation was significantly reduced (from ∼2 h to ∼10 min). Automated image segmentation can significantly reduce time expenses on the recreation of patient-specific AAA models. Moreover, our study showed that both CACU-Net and ARU-Net could accomplish AAA segmentation, and CACU-Net outperformed ARU-Net in terms of accuracy and time-saving.

Funder

American Heart Association

Michigan Technological University

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3