Deep Learning Models for Aorta Segmentation in Computed Tomography Images: A Systematic Review And Meta-Analysis

Author:

Wang Ting-Wei,Tzeng Yun-Hsuan,Hong Jia-Sheng,Liu Ho-Ren,Wu Kuan-Ting,Fu Hao-Neng,Lee Yung-Tsai,Yin Wei-Hsian,Wu Yu-Te

Abstract

Abstract Purpose This systematic review and meta-analysis was conducted to evaluate the usefulness of deep learning (DL) models for aorta segmentation in computed tomography (CT) images. Methods Adhering to 2020 PRISMA guidelines, we systematically searched PubMed, Embase, and Web of Science for studies published up to March 13, 2024, that used DL models for aorta segmentation in adults’ chest CT images. We excluded studies that did not use DL models, involved nonhuman subjects or aortic diseases (aneurysms and dissections), or lacked essential data for meta-analysis. Segmentation performance was evaluated primarily in terms of Dice scores. Subgroup analyses were performed to identify variations related to geographical location and methodology. Results Our review of 16 studies indicated that DL models achieve high segmentation accuracy, with a pooled Dice score of 96%. We further noted geographical variations in model performance but no significant publication bias, according to the Egger test. Conclusion DL models facilitate aorta segmentation in CT images, and they can therefore guide accurate, efficient, and standardized diagnosis and treatment planning for cardiovascular diseases. Future studies should address the current challenges to enhance model generalizability and evaluate clinical benefits and thus expand the application of DL models in clinical practice.

Funder

Chenyang Project at Cheng Hsin General Hospital

National Yang Ming Chiao Tung University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3