Temperature dependence studies of tissue-mimicking phantoms for ultra-wideband microwave breast tumor detection

Author:

Slanina TORCID,Nguyen D H,Moll JORCID,Krozer VORCID

Abstract

Abstract Microwave imaging (MWI) systems are being investigated for breast cancer diagnostics as an alternative to conventional x-ray mammography and breast ultrasound. This work aims at a next generation of tissue-mimicking phantoms modelling the temperature-dependent dielectric properties of breast tissue over a large frequency bandwidth. Such phantoms can be used to develop a novel kind of MWI systems that exploit the temperature-dependent permittivity of tissue as a natural contrast agent. Due to the higher water content in tumor tissue, a temperature increase leads to a different change in the complex permittivity compared to surrounding tissue. This will generate a tumor dominated scattering response when the overall tissue temperature increases by a few degrees, e.g. through the use of microwave hyperthermia systems. In that case a differential diagnostic image can be calculated between microwave measurements at reference (around 37 °C) and elevated temperature conditions. This work proposes the design and characterization of agar-oil-glycerin phantoms for fatty, glandular, skin and tumor tissue. The characterization includes measurements with an open-ended coaxial probe and a network analyzer for the frequency range from 50 MHz to 20 GHz in a temperature-controlled environment covering the temperature range from 25 °C to 46 °C. The phantoms show an unique temperature response over the considered frequency bandwidth leading to significant changes in the real and imaginary part of the complex permittivity. Comparative studies with porcine skin and fat tissue show a qualitative agreement.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

General Nursing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring;Sensors;2024-09-11

2. Breast Cancer Detection Using Circularly Polarized Printed UWB Antenna;2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM);2023-11-28

3. Temperature-Induced Contrast Enhancement for Radar-Based Breast Tumor Detection at K-Band Using Tissue Mimicking Phantoms;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2023-09

4. K-band Microwave Breast Imaging: Two-dimensional Scanning of Tissue Phantoms;2023 17th European Conference on Antennas and Propagation (EuCAP);2023-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3