Osteogenic differentiation of bone marrow mesenchymal stem cells on chitosan/gelatin scaffolds: gene expression profile and mechanical analysis

Author:

Papadogiannis Fotios,Batsali Aristea,Klontzas Michail EORCID,Karabela Maria,Georgopoulou Anthie,Mantalaris Athanasios,Zafeiropoulos Nikolaos E,Chatzinikolaidou MariaORCID,Pontikoglou CharalamposORCID

Abstract

Abstract In the present study we explore the extracellular matrix (ECM) produced by human bone marrow mesenchymal stem/stromal cells (BM-MSCs) induced to undergo osteogenic differentiation within porous chitosan/gelatin (CS:Gel) scaffolds by investigating their multiple gene expression profile and mechanical behavior. Initially, the efficiency of the BM-MSCs osteogenic differentiation within the constructs was confirmed by the significant rise in the expression of the osteogenesis associated genes DLX5, RUNX2, ALP and OSC. In line with these findings, OSC and Col1A1 protein expression was also detected in BM-MSCs on the CS:Gel scaffolds at day 14 of osteogenic differentiation. We then profiled, for the first time, the expression of 84 cell adhesion and ECM molecules using PCR arrays. The arrays, which were conducted at day 14 of osteogenic differentiation, demonstrated that 49 genes including collagens, integrins, laminins, ECM proteases, catenins, thrombospondins, ECM protease inhibitors and cell-cell adhesion molecules were differentially expressed in BM-MSCs seeded on scaffolds compared to tissue culture polystyrene control. Moreover, we performed dynamic mechanical analysis of the cell-loaded scaffolds on days 0, 7 and 14 to investigate the correlation between the biological results and the mechanical behavior of the constructs. Our data demonstrate a significant increase in the stiffness of the constructs with storage modulus values of 2 MPa on day 7, compared to 0.5 MPa on day 0, following a drop of the stiffness at 0.8 MPa on day 14, that may be attributed to the significant increase of specific ECM protease gene expression such as MMP1, MMP9, MMP11 and MMP16 at this time period.

Funder

University of Crete Research Committee

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3