Effect of cell-nanostructured substrate interactions on the capture efficiency of HeLa cells

Author:

Kong Jinlong,Liu Yang,Du Xiangbin,Wang KaiqunORCID,Chen Weiyi,Huang DiORCID,Wei Yan,Mao Haiyang

Abstract

Abstract Circulating tumor cells (CTCs) are regarded as an effective biomarker for cancer detection, diagnosis and prognosis monitoring. CTCs capture based on nanostructured substrates is a powerful technique. Some specific adhesion molecule antibody coated on the surface of nanostructured substrates, such as EpCAM, is commonly used to enhance the CTCs capture efficiency. Substrate nanotopographies regulate the interaction between the substrates and captured cells, further influencing cell capture efficiency. However, the relationship between cell capture efficiency and cell–substrate interaction remains poorly understood. Here, we explored the relationship between cell capture efficiency and cell–substrate interaction based on two sets of nanostructures with different nanotopographies without antibody conjugation. Given the urgent demand for improving the capture efficiency of EpCAM-negative cells, we used HeLa (EpCAM-negative) cells as the main targets. We demonstrated that HeLa cells could be more effectively captured by two nanostructural substrates, especially by double-layer composite nanoforests. Therefore, the morphological and migrating interaction between HeLa cells and distinct substrates was associated with cell capture efficiency. Our findings demonstrated the potential mechanism for optimizing the nanotopography for higher capture efficiency, and provide a potential foundation for cancer detection, diagnosis and treatment.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3