Cancer Traps: Implantable and On‐Chip Solutions for Early Cancer Detection and Treatment

Author:

Caballero David12ORCID,Reis Rui L.12,Kundu Subhas C.12

Affiliation:

1. 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque da Ciência e Tecnologia Barco 4805‐017 Guimarães Portugal

2. ICVS/3B's‐PT Government Associate Laboratory Braga 4704‐553 Guimarães Portugal

Abstract

AbstractCancer continues to be a major global health issue causing millions of deaths annually. While traditional therapeutic methods may be effective in many cases, they may not be suitable for highly metastatic cancers. Moreover, the late detection of tumors, when they have already spread and are harder to treat, further exacerbates the challenge in managing this disease. As a result, there is a growing interest in developing complementary tissue‐engineered approaches for early cancer diagnosis and treatment to enhance patient recovery. Bioengineered cancer traps have gained significant attention due to their efficacy and ease of use. These trapping systems employ (bio)chemical and mechanical strategies to selectively capture and limit the spread of cancer cells, leading to their eradication from the body. Furthermore, when integrated into microfluidic devices, these cancer traps‐on‐a‐chip can be used for liquid biopsy and the early detection of circulating tumor cells and other tumor‐derived material, allowing for precision medicine treatments. Herein, this innovative approach to cancer theranostics, including its mechanism of action, current stage of development, and potential advantages and limitations is discussed.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3