Effects of aligned electrospun fibers with different diameters on hemocompatibility, cell behaviors and inflammation in vitro

Author:

Yu ChenglongORCID,Xing Meiyi,Wang LuORCID,Guan Guoping

Abstract

Abstract An endothelial cell (EC) monolayer aligned along the direction of blood flow in vivo shows excellent capacity for anti-inflammation and anti-thrombosis. Therefore, aligned electrospun fibers have been much studied in the field of vascular implants since they are considered to facilitate the formation of an aligned EC monolayer, yet few research studies have been comprehensively reported concerning the effects of diameter scales of aligned fibers. In the present work, a series of aligned polycaprolactone (PCL) electrospun fibers with varying diameters ranging from dozens of nanometers to several micrometers were developed, and the effects of the fiber scales on EC behaviors, hemocompatibility as well as inflammatory cell behaviors were investigated, to evaluate their potential performance in the field of vascular implants. Our results showed that platelets exhibited small attachment forces on all fibers, and the anticoagulation property improved with the decrease of the fiber diameters. The impact of fiber diameters on human umbilical vein endothelial cell (HUVEC) adhesion and NO release was limited, while significant on HUVEC proliferation. With the increase of the fiber diameters, the elongation of HUVECs on our samples increased first then decreased, and exhibited maximum elongation degrees on 2738 nm and 2036 nm due to the strong contact guidance effect on these graphical cues; too thick or too fine fibers would weaken the contact guidance effect. Furthermore, we hypothesized that HUVECs cultured on 2036 nm had the smallest spreading area because of their elongation, but 2738 nm restricted HUVECs spreading limitedly. Similarly, NO production of HUVECs showed a similar change trend as their elongation degrees on different fibers. Except for 2036 nm, it exhibited the second highest NO production. For RAW 264.7 cells, poorer cell adhesion and lower TNF-α concentration of 1456 nm indicated its superior anti-inflammation property, while 73 nm showed a contrasting performance. Overall, these findings partly revealed the relationship between different topographies and cell behaviors, providing basic insight into vascular implant design.

Funder

Innovation Program of Shanghai Municipal Education Commission

Fundamental Research Funds of Central Universities

111 project

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3