Abstract
Abstract
This paper aims to mathematically model the dynamics of Parkinson’s disease with therapeutic strategies. The constructed model consists of five state variables: healthy neurons, infected neurons, extracellular α-syn, active microglia, and resting microglia. The qualitative analysis of the model produced an unstable free equilibrium point and a stable endemic equilibrium point. Moreover, these results are validated by numerical experiments with different initial values. Two therapeutic interventions, reduction of extracellular α-syn and reduction of inflammation induced by activated microglia in the central nervous system, are investigated. It is observed that the latter has no apparent effect in delaying the deterioration of neurons. However, treatment to reduce extracellular α-syn preserves neurons and delays the onset of Parkinson’s disease, whether alone or in combination with another treatment.
Subject
Cell Biology,Molecular Biology,Structural Biology,Biophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献