Operating principles of circular toggle polygons

Author:

Hati Souvadra,Duddu Atchuta Srinivas,Jolly Mohit KumarORCID

Abstract

Abstract Decoding the dynamics of cellular decision-making and cell differentiation is a central question in cell and developmental biology. A common network motif involved in many cell-fate decisions is a mutually inhibitory feedback loop between two self-activating ‘master regulators’ A and B, also called as toggle switch. Typically, it can allow for three stable states—(high A, low B), (low A, high B) and (medium A, medium B). A toggle triad—three mutually repressing regulators A, B and C, i.e. three toggle switches arranged circularly (between A and B, between B and C, and between A and C)—can allow for six stable states: three ‘single positive’ and three ‘double positive’ ones. However, the operating principles of larger toggle polygons, i.e. toggle switches arranged circularly to form a polygon, remain unclear. Here, we simulate using both discrete and continuous methods the dynamics of different sized toggle polygons. We observed a pattern in their steady state frequency depending on whether the polygon was an even or odd numbered one. The even-numbered toggle polygons result in two dominant states with consecutive components of the network expressing alternating high and low levels. The odd-numbered toggle polygons, on the other hand, enable more number of states, usually twice the number of components with the states that follow ‘circular permutation’ patterns in their composition. Incorporating self-activations preserved these trends while increasing the frequency of multistability in the corresponding network. Our results offer insights into design principles of circular arrangement of regulatory units involved in cell-fate decision making, and can offer design strategies for synthesizing genetic circuits.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Cell Biology,Molecular Biology,Structural Biology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3