Author:
Chang Hannah H,Oh Philmo Y,Ingber Donald E,Huang Sui
Abstract
Abstract
Background
Cell differentiation has long been theorized to represent a switch in a bistable system, and recent experimental work in micro-organisms has revealed bistable dynamics in small gene regulatory circuits. However, the dynamics of mammalian cell differentiation has not been analyzed with respect to bistability.
Results
Here we studied how HL60 promyelocytic precursor cells transition to the neutrophil cell lineage after stimulation with the differentiation inducer, dimethyl sulfoxide (DMSO). Single cell analysis of the expression kinetics of the differentiation marker CD11b (Mac-1) revealed all-or-none switch-like behavior, in contrast to the seemingly graduated change of expression when measured as a population average. Progression from the precursor to the differentiated state was detected as a discrete transition between low (CD11bLow) and high (CD11bHigh) expressor subpopulations distinguishable in a bimodal distribution. Hysteresis in the dependence of CD11b expression on DMSO dose suggests that this bimodality may reflect a bistable dynamic. But when an "unswitched" (CD11bLow) subpopulation of cells in the bistable/bimodal regime was isolated and cultured, these cells were found to differ from undifferentiated precursor cells in that they were "primed" to differentiate.
Conclusion
These findings indicate that differentiation of human HL60 cells into neutrophils does not result from a simple state transition of a bistable switch as traditionally modeled. Instead, mammalian differentiation appears to be a multi-step process in a high-dimensional system, a result which is consistent with the high connectivity of the cells' complex underlying gene regulatory network.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Rubin H: Mechanisms for enduring biological change. Am J Physiol. 1992, 262 (1 Pt 1): L111-3.
2. Krutzik PO, Irish JM, Nolan GP, Perez OD: Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clinical Immunology. 2004, 110 (3): 206-221. 10.1016/j.clim.2003.11.009.
3. Novick A, Weiner M: Enzyme Induction as an All-or-None Phenomenon. Proc Natl Acad Sci U S A. 1957, 43: 553-566.
4. Waddington CH: Principles of Embryology. 1956, London , Allen & Unwin Ltd
5. Bagowski CP, Ferrell JE: Bistabillity in the JNK cascade. Current Biology. 2001, 11 (15): 1176-1182. 10.1016/S0960-9822(01)00330-X.
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献