On the physical significance of non-local material parameters in optical metamaterials

Author:

Venkitakrishnan RamakrishnaORCID,Augenstein YannickORCID,Zerulla BenediktORCID,Goffi Fatima ZORCID,Plum MichaelORCID,Rockstuhl CarstenORCID

Abstract

Abstract When light interacts with a material made from subwavelength periodically arranged constituents, non-local effects can emerge. They occur because of either a complicated response of the constituents or possible lattice interactions. In lowest-order approximations of a general non-local response function, phenomena like an artificial magnetism and a bi-anisotropic response emerge. However, investigations beyond these lowest-order descriptions of non-local effects are needed for optical metamaterials (MMs) where a significant long-range interaction becomes evident. This highlights the need for additional material parameters to account for spatial non-locality in an effective medium description. These material parameters emerge from a Taylor expansion of the general and exact non-local response function. Even though these non-local parameters improve the effective description, their physical significance is yet to be understood. To improve the situation, we consider a conceptional MM consisting of scatterers characterized by a prescribed multipolar response arranged on a square lattice. Lorentzian polarizabilities describe the scatterers in the electric dipolar, electric quadrupolar, and magnetic dipolar terms. A slab of such a MM is homogenized while considering an increasing number of non-local terms in the constitutive relations at the effective level. We show that the effective permittivity and permeability are linked to the electric and magnetic dipole moments of the scatterers. The non-local material parameters are related to the higher-order multipolar moments and their interaction with the dipolar terms. Studying the effective material parameters with the knowledge of the induced multipolar moments in the lattice facilitates our understanding of the significance of each material parameter. Our insights aid in deciding on the order to truncate the Taylor expansion of the considered constitutive relations for a given MM.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3