Anomalous nonlinear optical effect and enhanced emission by magnetic excitons in CVD grown cobalt-doped ZnSe nanoribbon

Author:

Zou BingsuoORCID,Hou Lipeng,Tian Ye,Han JunboORCID,Peng Hui,Yang Xiongtao,Shi LijieORCID

Abstract

Abstract The magnetic excitons in diluted magnetic semiconductor (DMS) have varied formats due to the inhomogeneous phases out of doping concentration and/or structural relaxations or defects. Here the high quality cobalt-doped zinc blende ZnSe nanoribbons (NRs) were synthesized, showing bright and color-variable emissions from blue, yellow to a little mixed white colors. Their power and temperature dependent micro-photoluminescence (PL) spectra have been obtained in which two emission bands, one magnetic exciton band near the band-edge and a Co2+ high-level dd transition emission band at 550 nm out of their ferromagnetic (FM) coupled aggregates in ZnSe lattice, both bands could also be reflected by a nonlinear optical absorption enhancement. The easy formed stacking fault defects in a chemical vapor deposition (CVD) grown ZnSe zincblende NR took part in the above optical processes out of magnetic polaronic excitons (PXs). The femtosecond (fs) laser pulse pumping on single ZnSe:Co NR produces obvious lasing behavior but with profile of a complicated magnetic exciton interactions with indication of a crossover from collective exciton magnetic polarons (EMP) to bound magnetic polaron (BMP) scattering in Co doped ZnSe NR. These findings indicate the complication of the magnetic coupling natures in varied DMS structures, whose optical properties have been found to be highly nonlinear, due to the involvement of the spin–spin, spin–exciton and spin–phonon interactions, verified by the theoretic calculation in Yang X-T et al (2019 Interstitial Zn-modulated ferromagnetism in Co-doped ZnSe Mater. Res. Express 6 106121).

Funder

973 Project

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3