Realizing Color‐Tunable and Time‐Dependent Ultralong Afterglow Emission in Antimony‐Doped CsCdCl3 Metal Halide for Advanced Anti‐Counterfeiting and Information Encryption

Author:

Ge Shuaigang12,Peng Hui1ORCID,Wei Qilin12,Shen Xiaodong12,Huang Weiguo12,Liang Weizheng1,Zhao Jialong12,Zou BingSuo12

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials School of Resources, Environments and Materials Guangxi University 530004 Nanning China

2. School of Physical Science and Technology Guangxi University Nanning 530004 China

Abstract

AbstractLong afterglow luminescent materials have captured intense attention for their unique applications in biological imaging, photodynamic therapy, and optical anti‐counterfeiting. However, achieving highly efficient and tunable ultralong afterglow emission in all‐inorganic metal halides is an open challenge. Herein, Sb3+‐doped hexagonal CsCdCl3 metal halide is reported via hydrothermal reaction. Upon photoabsorption, the as‐synthesized compounds exhibit dual‐emission bands with a photoluminescence quantum yield (PLQY) of 59.6%, which can be attributed to the self‐trapped exciton emission out of the strong electron‐phonon coupling. After ceasing excitation of 365 nm, bright afterglow emission with the longest duration lasting up to 5000 s is witnessed in Sb3+‐doped CsCdCl3. More importantly, the color‐tunable and time‐dependent ultralong afterglow emission is realized via regulating the doping concentration of Sb3+, which should be due to the trap electrons increase gradually under high doping concentration. Given this unusual afterglow emission characteristics, the optical anti‐counterfeiting and information encryption are constructed based on as‐synthesized compounds. These findings not only help further understand the tunable afterglow emission mechanism in all‐inorganic metal halides, but also provide a new strategy for designing novel ultralong afterglow luminescent materials.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3