Topological phase transition between non-high symmetry critical phases and curvature function renormalization group

Author:

R Kumar RanjithORCID,Kartik Y R,Sarkar Sujit

Abstract

Abstract The interplay between topology and criticality has been a recent interest of study in condensed matter physics. A unique topological transition between certain critical phases has been observed as a consequence of the edge modes living at criticalities. In this work, we generalize this phenomenon by investigating possible transitions between critical phases which are non-high symmetry (non-HS) in nature. We find the triviality and non-triviality of these critical phases in terms of the decay length of the edge modes and also characterize them using the winding numbers. The distinct non-HS critical phases are separated by multicritical points with linear dispersion at which the winding number exhibits the quantized jump, indicating a change in the topology (number of edge modes) at the critical phases. Moreover, we reframe the scaling theory based on the curvature function, i.e. curvature function renormalization group method to efficiently address the non-HS criticalities and multicriticalities. Using this we identify the conventional topological transition between gapped phases through non-HS critical points, and also the unique topological transition between critical phases through multicritical points. The renormalization group flow, critical exponents and correlation function of Wannier states enable the characterization of non-HS criticalities along with multicriticalities.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3