Exact diagonalisation of photon Bose–Einstein condensates with thermo-optic interaction

Author:

Stein EnricoORCID,Pelster AxelORCID

Abstract

Abstract Although photon Bose–Einstein condensates have already been used for studying many interesting effects, the precise role of the photon–photon interaction is not fully clarified up to now. In view of this, it is advantageous that these systems allow measuring both the intensity of the light leaking out of the cavity and its spectrum at the same time. Therefore, the photon–photon interaction strength can be determined once via analysing the condensate broadening and once via examining the interaction-induced modifications of the cavity modes. As the former method depends crucially on the concrete shape of the trapping potential and the spatial resolution of the used camera, interferometric methods promise more precise measurements. To this end, the present paper works out the impact of the photon–photon interaction upon the cavity modes. A quantum mechanical description of the photon–photon interaction, including the thermal cloud, builds the theoretical backbone of the method. An exact diagonalisation approach introduced here exposes how the effective photon–photon interaction modifies both the spectrum and the width of the photon gas. A comparison with a variational approach based on the Gross–Pitaevskii equation quantifies the contribution of the thermal cloud in the respective applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3