Hartree–Fock analogue theory of thermo-optic interaction

Author:

Stein EnricoORCID,Pelster AxelORCID

Abstract

Abstract Thermo-optic interaction significantly differs from the usual particle-particle interactions in physics, as it is retarded in time. A prominent platform for realising this kind of interaction are photon Bose–Einstein condensates, which are created in dye-filled microcavities. The dye solution continually absorbs and re-emits these photons, causing the photon gas to thermalize and to form a Bose–Einstein condensate. Because of a non-ideal quantum efficiency, these cycles heat the dye solution, creating a medium that provides an effective thermo-optic photon–photon interaction. So far, only a mean-field description of this process exists. This paper goes beyond by working out a quantum mechanical description of the effective thermo-optic photon–photon interaction. To this end, the self-consistent modelling of the temperature diffusion builds the backbone of the modelling. Furthermore, the manyfold experimental timescales allow for deriving an approximate Hamiltonian. The resulting quantum theory is applied in the perturbative regime to both a harmonic and a box potential for investigating its prospect for precise measurements of the effective photon–photon interaction strength.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. The physics of dipolar bosonic quantum gases;Lahaye;Rep. Prog. Phys.,2009

2. A matter of gravity;Faccio;Nat. Phys.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3