Abstract
Abstract
In this paper we present an alternative G0W0-BSE procedure, suitable for calculation of the quasi-particle and optical properties in 2D semiconductors. The method completely excludes the spurious Coulomb interaction with 2D crystal replicas. The calculated band gap energies of hexagonal boron nitride (hBN), MoS2 and MoTe2 monolayers are in good agreement with other theoretical results. The 2D Bethe–Salpeter equation is derived and reduced to a 2D-hydrogen Schrödinger equation in which enter the G0W0 band gap, DFT effective masses, and RPA screened Coulomb interaction. This formulation is applied to the problems of determining exciton binding energies and estimating the quasiparticle band gap in hBN, as well as in some transition-metal dichalcogenides. A semiclassical procedure is used in the limit of high polarizability λ in order to obtain the analytical expression for exciton binding energies.
Funder
QuantiXLie Centre of Excellence
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献