Super-exchange theory for polyvalent anion magnets

Author:

Zhang Fang,Kong You-Chao,Pang Rui,Hu Liang,Gong Peng-Lai,Shi Xing-QiangORCID,Tang Zi-KangORCID

Abstract

Abstract The Goodenough–Kanamori–Anderson (GKA) rules have been widely applied for explaining the magnetic properties induced by super-exchange interaction. As conclusions of the super-exchange theory, they reveal the antiferromagnetic (ferromagnetic) ordering along with bond angle of 180° (90°) in the cation–anion–cation interaction path, in which the theory sets a pre-condition that the electronic states of cations in all paths are identical. We observed that the GKA rules are in fact not universal and even invalid to materials containing anions with different valence states, for example, the layered CrOCl crystal (with two valence states of anions: O2− and Cl). In this study, we propose an extended super-exchange theory (ESET) related to superposed electronic states of cation in a specific path. ESET is capable of predicting not only the sign and relative magnitude of magnetic exchange constants in different cation–anion–cation paths, but also the magnetic ground state. Through our proposed theory, we conclude that the magnetic ordering along with bond angle of 90° in Cr–Cl–Cr path is moderately antiferromagnetic and of 180° in Cr–O–Cr path is strongly ferromagnetic, which are opposite to the contents of GKA rules. Moreover, we clarify that monolayer CrOCl has antiferromagnetic ordering rather than ferromagnetic as reported recently. The reliability of ESET is verified via first-principles calculation and previous experimental report as well, and its universality is also demonstrated. Thus, our theory is powerful to predict the magnetic properties, which makes it possible to design new high Curie temperature two-dimensional semiconducting ferromagnets with polyvalent anion materials.

Funder

Natural Science Foundation of Guangdong Province of China

National Natural Science Foundation Youth Fund

Start-up Research Grant

Fundo para o Desenvolvimento das Ciências e da Tecnologia

Research & Development Grant for Chair Professo

Shenzhen Fundamental Research Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3