Realizing Room‐Temperature Ferromagnetism in Molecular‐Intercalated Antiferromagnet VOCl

Author:

Liu Chaocheng1,Li Zhi1,Chen Zheng2,Hu Jiyu3,Duan Hengli1,Wang Chao1,Feng Sihua1,Liu Ruiqi1,Zhang Guobin1,Cao Jiefeng4,Niu Yuran5,Li Qian1,Li Pai6,Yan Wensheng1ORCID

Affiliation:

1. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 China

2. High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031 China

3. School of Physics and Materials Engineering Hefei Normal University Hefei 230601 China

4. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

5. MAX IV Laboratory Lund University Lund 22100 Sweden

6. State Key Laboratory of Materials for Integrated Circuits Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

Abstract

Abstract2D van der Waals (vdW) magnets are gaining attention in fundamental physics and advanced spintronics, due to their unique dimension‐dependent magnetism and potential for ultra‐compact integration. However, achieving intrinsic ferromagnetism with high Curie temperature (TC) remains a technical challenge, including preparation and stability issues. Herein, an applicable electrochemical intercalation strategy to decouple interlayer interaction and guide charge doping in antiferromagnet VOCl, thereby inducing robust room‐temperature ferromagnetism, is developed. The expanded vdW gap isolates the neighboring layers and shrinks the distance between the V‐V bond, favoring the generation of ferromagnetic (FM) coupling with perpendicular magnetic anisotropy. Element‐specific X‐ray magnetic circular dichroism (XMCD) directly proves the source of the ferromagnetism. Detailed experimental results and density functional theory (DFT) calculations indicate that the charge doping enhances the FM interaction by promoting the orbital hybridization between t2g and eg. This work sheds new light on a promising way to achieve room‐temperature ferromagnetism in antiferromagnets, thus addressing the critical materials demand for designing spintronic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3