A study of coherent and incoherent resonances in high intensity beams using a linear Paul trap

Author:

Martin L KORCID,Machida SORCID,Kelliher D JORCID,Sheehy S LORCID

Abstract

Abstract In this paper we present the first quantitative measurement of the change in frequency (tune) with intensity of four transverse resonances in a high intensity Gaussian beam. Due to the nonlinear space charge forces present in high intensity beams, particle motion cannot be analytically described. Instead we use the simulator of particle orbit dynamics and the intense beam experiment, two linear Paul traps (LPTs), to replicate the system experimentally. In high intensity beams a coherent resonant response to both space charge and external field driven perturbations is possible, these coherent resonances are excited at a tune that differs by a factor C m from that of the incoherent resonance. By increasing the number of ions stored in the LPT and studying the location of four different resonances we extract provisional values describing the change in tune of the resonance with intensity. These values are then compared to the C m factors for coherent resonances. We find that the C m factors do not accurately predict the location of resonances in high intensity Gaussian beams. Further insight into the experiment was gained through simulation using Warp, a particle-in-cell code.

Funder

Royal Society

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference28 articles.

1. Transverse space-charge effects in circular AcceleratorsTransverse space charge effects in particle accelerators;Morin,1962

2. Betatron resonances with space charge;Baartman,1998

3. Oscillations in a synchrotron under space charge conditions;Lapostolle,1963

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3