Table-top ion-trap experiment on the stability of intense short bunches in linear hadron accelerators

Author:

Kuroda M.1,Kasagaki A.1,Okamoto H.1ORCID,Ito K.1ORCID

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan

Abstract

The novel experimental system “S-POD” (Simulator of Particle Orbit Dynamics) is employed to explore the stability of short hadron bunches in high-intensity linacs. In a previous study with the S-POD [M. Goto et al., ], a static potential was used to focus the bunch in the longitudinal direction. We here make a step forward to include the possibility of pure synchrotron resonance, introducing periodic modulation to the longitudinal potential well. The modulation period was taken a half of the transverse alternating-gradient focusing period, which reflects the most typical lattice condition of a drift-tube linac. Detailed stability maps are constructed to reveal dangerous parameter regions where serious beam loss may occur due to resonance. We reconfirm the existence of various betatron and synchrobetatron resonance stop bands whose widths and locations change in tune space depending on the bunch intensity. It turns out that the periodicity of the longitudinal focusing potential brings about no pronounced effect on the resonance feature; the result is very similar to what we obtained in the previous study with a static longitudinal potential. As long as the lattice periodicity mentioned above is maintained, no serious noncoupling synchrotron resonance appears even with a high synchrotron phase advance above 90° per unit alternating-gradient cell. Severe envelope instability may, however, be excited in the longitudinal direction if the axial focusing force includes error components that affect the original lattice periodicity. The experimental observations can be explained with the free from the concept of incoherent tune spread. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3