Surface-polaritonic phase singularities and multimode polaritonic frequency combs via dark rogue-wave excitation in hybrid plasmonic waveguide

Author:

Asgarnezhad-Zorgabad Saeid,Sadighi-Bonabi Rasoul,Kibler BertrandORCID,Özdemir Şahin KayaORCID,Sanders Barry CORCID

Abstract

Abstract Material characteristics and input-field specifics limit controllability of nonlinear electromagnetic-field interactions. As these nonlinear interactions could be exploited to create strongly localized bright and dark waves, such as nonlinear surface polaritons, ameliorating this limitation is important. We present our approach to amelioration, which is based on a surface-polaritonic waveguide reconfiguration that enables excitation, propagation and coherent control of coupled dark rogue waves having orthogonal polarizations. Our control mechanism is achieved by finely tuning laser-field intensities and their respective detuning at the interface between the atomic medium and the metamaterial layer. In particular, we utilize controllable electromagnetically induced transparency windows commensurate with surface-polaritonic polarization-modulation instability to create symmetric and asymmetric polaritonic frequency combs associated with dark localized waves. Our method takes advantage of an atomic self-defocusing nonlinearity and dark rogue-wave propagation to obtain a sufficient condition for generating phase singularities. Underpinning this method is our theory which incorporates dissipation and dispersion due to the atomic medium being coupled to nonlinear surface-polaritonic waves. Consequently, our waveguide configuration acts as a bimodal polaritonic frequency-comb generator and high-speed phase rotator, thereby opening prospects for phase singularities in nanophotonic and quantum communication devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3