Author:
Ramanathan Ravishankar,Liu Yuan,Horodecki Pawel
Abstract
Abstract
It is of interest to study how contextual quantum mechanics is, in terms of the violation of Kochen Specker state-independent and state-dependent non-contextuality inequalities. We present state-independent non-contextuality inequalities with large violations, in particular, we exploit a connection between Kochen-Specker proofs and pseudo-telepathy games to show KS proofs in Hilbert spaces of dimension $d \geq 2^{17}$ with the ratio of quantum value to classical bias being $O(\sqrt{d}/\log d)$. We study the properties of this KS set and show applications of the large violation. It has been recently shown that Kochen-Specker proofs always consist of substructures of state-dependent contextuality proofs called $01$-gadgets or bugs. We show a one-to-one connection between $01$-gadgets in $\mathbb{C}^d$ and Hardy paradoxes for the maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$. We use this connection to construct large violation $01$-gadgets between arbitrary vectors in $\mathbb{C}^d$, as well as novel Hardy paradoxes for the maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$, and give applications of these constructions. As a technical result, we show that the minimum dimension of the faithful orthogonal representation of a graph in $\mathbb{R}^d$ is not a graph monotone, a result that may be of independent interest.
Funder
Research Grants Council, University Grants Committee
Fundacja na rzecz Nauki Polskiej
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献