Tilted Hardy paradoxes for device-independent randomness extraction

Author:

Zhao Shuai1ORCID,Ramanathan Ravishankar1ORCID,Liu Yuan1,Horodecki Paweł23ORCID

Affiliation:

1. Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong

2. International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

3. Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract

The device-independent paradigm has had spectacular successes in randomness generation, key distribution and self-testing, however most of these results have been obtained under the assumption that parties hold trusted and private random seeds. In efforts to relax the assumption of measurement independence, Hardy's non-locality tests have been proposed as ideal candidates. In this paper, we introduce a family of tilted Hardy paradoxes that allow to self-test general pure two-qubit entangled states, as well as certify up to 1 bit of local randomness. We then use these tilted Hardy tests to obtain an improvement in the generation rate in the state-of-the-art randomness amplification protocols for Santha-Vazirani (SV) sources with arbitrarily limited measurement independence. Our result shows that device-independent randomness amplification is possible for arbitrarily biased SV sources and from almost separable states. Finally, we introduce a family of Hardy tests for maximally entangled states of local dimension 4,8 as the potential candidates for DI randomness extraction to certify up to the maximum possible 2log⁡d bits of global randomness.

Funder

The University of Hong Kong

Research Grants Council of Hong Kong

Foundation for Polish Science

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3