Ultrafast dynamics and evolution of ion-induced opacity in transparent dielectrics

Author:

Coughlan MORCID,Donnelly H,Breslin N,Arthur C,Nersisyan G,Yeung M,Villagomez-Bernabe BORCID,Afshari MORCID,Currell F,Zepf M,Dromey B

Abstract

Abstract Recently, measurements of few-picosecond (ps, 10−12 s) pulses of laser-driven protons were realised by the observation of transient opacity in SiO2. This ultrafast response could be understood by the formation of self-trapped excitonic states in the material, creating a rapid de-excitation channel for conduction band electrons. Here we extend this work to examine the onset and evolution of an ion-induced opacity in transparent dielectrics, namely multicomponent variants of SiO2. The fast recovery observed in SiO2 is in sharp contrast to borosilicate (BK7) and soda-lime glasses. We find that the opacity decay timescales for BK7 and soda-lime glass are orders of magnitude greater than the 3.5 ps proton pump pulse duration and discuss the underlying processes which may be affecting the extended recovery of the material. Simultaneous probing with 2nd harmonic radiation allows estimates of ultrafast electron dynamics due to proton interactions in matter to be investigated, this indicates that a rapid evolution of an initially unstructured ion-induced dose distribution seeds the longer term recovery pathways in the irradiated dielectrics. When combined, these results demonstrate the efficacy of utilising ultrafast laser-driven ionising radiation along with highly synchronised probe pulses to enable the study of ion-induced damage in matter on ultrafast timescales in real time.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3