An excitonic model for the electron–hole plasma relaxation in proton-irradiated insulators

Author:

Stella LorenzoORCID,Smyth Jonathan,Dromey Brendan,Kohanoff Jorge

Abstract

Abstract The relaxation of free electron–hole pairs generated after proton irradiation is modelled by means of a simplified set of hydrodynamic equations. The model describes the coupled evolution of the electron–hole pair and self-trapped exciton (STE) densities, along with the electronic and lattice temperatures. The equilibration of the electronic and lattice excitations is based on the two-temperature model, while two mechanisms for the relaxation of free electron–hole pairs are considered: STE formation and Auger recombination. Coulomb screening and band gap renormalisation are also taken into account. Our numerical results show an ultrafast ($${\ll }\,{\mathrm {1}}$$ 1 ps) free electron–hole pair relaxation time in amorphous $${{\mathrm {SiO}}_{\mathrm {2}}}$$ SiO 2 for initial carrier densities either below or above the exciton Mott transition. Coulomb screening alone is not found to yield the long relaxation time ($${\mathrm {\gg }}{\mathrm {10}}$$ 10 ps) experimentally observed in amorphous $${{\mathrm {SiO}}_{\mathrm {2}}}$$ SiO 2 and borosilicate crown glass BK7 irradiated with high-intensity laser pulses or BK7 irradiated by short proton pulses. Another mechanism, e.g. thermal detrapping of STEs, is required to correctly model the long free electron–hole pair relaxation time observed experimentally. Graphical Abstract

Funder

Engineering and Physical Sciences Research Council

H2020 Marie Sklodowska-Curie Actions

European Cooperation in Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Reference56 articles.

1. N. Itoh, A.M. Stoneham, Material Modification by Electronic Excitation (Cambridge University Press, Cambridge, 2000)

2. R.L. Fleischer, P.B. Price, R.M. Walker, Ion explosion spike mechanism for formation of charged-particle tracks in solids. J. Appl. Phys. 36(11), 3645–3652 (1965). https://doi.org/10.1063/1.1703059

3. E.M. Bringa, R.E. Johnson, Coulomb explosion and thermal spikes. Phys. Rev. Lett. 88, 165501 (2002). https://doi.org/10.1103/PhysRevLett.88.165501

4. M. Toulemonde, W. Assmann, C. Dufour, A.F. Meftah, S.C. Trautmann, Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat. Fys. Medd. 52, 263–292 (2006)

5. C. Dufour, M. Toulemonde, Models for the description of track formation, in Ion Beam Modification of Solids, ed. by W. Wesch, E. Wendler (Springer, Berlin, 2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3