Performance analysis of a hybrid agent for quantum-accessible reinforcement learning

Author:

Hamann ArneORCID,Wölk SabineORCID

Abstract

Abstract In the last decade quantum machine learning has provided fascinating and fundamental improvements to supervised, unsupervised and reinforcement learning (RL). In RL, a so-called agent is challenged to solve a task given by some environment. The agent learns to solve the task by exploring the environment and exploiting the rewards it gets from the environment. For some classical task environments, an analogue quantum environment can be constructed which allows to find rewards quadratically faster by applying quantum algorithms. In this paper, we analytically analyze the behavior of a hybrid agent which combines this quadratic speedup in exploration with the policy update of a classical agent. This leads to a faster learning of the hybrid agent compared to the classical agent. We demonstrate that if the classical agent needs on average ⟨J⟩ rewards and ⟨Tcl epochs to learn how to solve the task, the hybrid agent will take T q α s α o T c l J epochs on average. Here, α s and α o denote constants depending on details of the quantum search and are independent of the problem size. Additionally, we prove that if the environment allows for maximally α o k max sequential coherent interactions, e.g. due to noise effects, an improvement given by ⟨Tqα o Tcl/(4k max) is still possible.

Funder

Austrian Science Fund

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3