Strong ensemble nonequivalence in systems with local constraints

Author:

Zhang QiORCID,Garlaschelli DiegoORCID

Abstract

Abstract The asymptotic equivalence of canonical and microcanonical ensembles is a central concept in statistical physics, with important consequences for both theoretical research and practical applications. However, this property breaks down under certain circumstances. The most studied violation of ensemble equivalence requires phase transitions, in which case it has a ‘restricted’ (i.e. confined to a certain region in parameter space) but ‘strong’ (i.e. characterized by a difference between the entropies of the two ensembles that is of the same order as the entropies themselves) form. However, recent research on networks has shown that the presence of an extensive number of local constraints can lead to ensemble nonequivalence (EN) even in the absence of phase transitions. This occurs in a ‘weak’ (i.e. leading to a subleading entropy difference) but remarkably ‘unrestricted’ (i.e. valid in the entire parameter space) form. Here we look for more general manifestations of EN in arbitrary ensembles of matrices with given margins. These models have widespread applications in the study of spatially heterogeneous and/or temporally nonstationary systems, with consequences for the analysis of multivariate financial and neural time-series, multi-platform social activity, gene expression profiles and other big data. We confirm that EN appears in ‘unrestricted’ form throughout the entire parameter space due to the extensivity of local constraints. Surprisingly, at the same time it can also exhibit the ‘strong’ form. This novel, simultaneously ‘strong and unrestricted’ form of nonequivalence is very robust and imposes a principled choice of the ensemble. We calculate the proper mathematical quantities to be used in real-world applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3