Range changeable local structural information of nodes in complex networks

Author:

Li Meizhu1,Zhou Minghao2,Feng Deyue2,Zhang Qi23

Affiliation:

1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China

2. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China

3. Lorentz Institute for Theoretical Physics, Leiden University, P. O. Box 9504, 2300 RA Leiden, The Netherlands

Abstract

In the research of complex networks, structural analysis can be explained as finding the information hidden in the network’s topological structure. Thus, the way and the range of the structural information collection decide what kinds of information can be found in the structural analysis. In this work, based on the definition of Shannon entropy and the changeable range of structural information collecting (changeable local network for each node), the local structural information (LSI) of nodes in complex networks is proposed. According to the definition, when the range of the local network converges to the node itself, the LSI is their original structural properties, e.g. node’s degree, betweenness and clustering coefficient, but when the range of the local network extends to the whole network (order of the local network equal to the diameter of networks), the LSI is equivalent to the structural entropy of the entire static network, e.g. degree structural entropy, betweenness structural entropy. We also find that the local degree structural information can be used to classify the nodes in the network, and the proportion of the “bridge” nodes in the network is a new indicator of the network’s robustness, the bigger this proportion of bridge nodes in the network, the more robust the network. This finding also explains why the regular networks or the lattice is so stable, as almost all the nodes in those systems are the “bridge” nodes that are identified by the local degree structural information.

Funder

the Scientific research funding of Jiangsu University of Science and Technology

Research Initiation Fund for Senior Talents of Jiangsu University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3