Promising near-infrared plasmonic biosensor employed for specific detection of SARS-CoV-2 and its spike glycoprotein

Author:

Peng Xiao,Zhou Yingxin,Nie Kaixuan,Zhou Feifan,Yuan YufengORCID,Song JunORCID,Qu Junle

Abstract

Abstract Timely and accurately identification of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can greatly contribute to monitoring and controlling the global pandemic. This study gained theoretical insight into a novel phase-modulation plasmonic biosensor working in the near-infrared (NIR) regime, which can be employed for sensitive detection of SARS-CoV-2 and its spike (S) glycoprotein. The proposed plasmonic biosensor was created by integrating two-dimensional (2D) Van der Waals heterostructures, including tellurene and carboxyl-functionalized molybdenum disulfide (MoS2) layers, with transparent indium tin oxide (ITO) film. Excellent biosensing performance can be achieved under the excitation of 1550 nm by optimizing the thickness of ITO film and tellurene-MoS2 heterostructures. For a sensing interface refractive index change as low as 0.0012 RIU (RIU, refractive index unit), the optimized plasmonic configuration of 121 nm ITO film/three-layer tellurene/ten-layer MoS2-COOH can produce the highest detection sensitivity of 8.4069 × 104 degree/RIU. More importantly, MoS2–COOH layer can capture angiotensin-converting enzyme II, which is an ideal adsorption site for specifically binding SARS-CoV-2 S glycoprotein. Then, an excellent linear detection range for S glycoprotein and SARS-CoV-2 specimens is ∼0–301.67 nM and ∼0–67.8762 nM, respectively. This study thus offers an alternative strategy for rapidly performing novel coronavirus diagnosis in clinical applications.

Funder

National Natural Science Foundation of China

Shenzhen Basic Research Project

Science Foundation of Shenzhen University

Guangdong Basic and Applied Basic Research Foundation

Project of Department of Education of Guangdong Province

Guangdong Province Key Area R&D Program

National Key R&D Program of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3