Iontronic and electrochemical investigations of 2D tellurene in aqueous electrolytes

Author:

Wu Zongxiao1,Qi Junlei1,Wang Wenbin1,Yang Peng2,Ma Chen3,Huang Haoxin4,Bao Kai1,Wu Jingkun1,Ke Chengxuan1,Chen Ye3,Tan Chaoliang5ORCID,Repaka D. V. Maheswar6,He Qiyuan1ORCID

Affiliation:

1. Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR China

2. College of Integrated Circuits and Optoelectronic Chips Shenzhen Technology University Shenzhen China

3. Department of Chemistry The Chinese University of Hong Kong Hong Kong SAR China

4. Department of Electrical Engineering City University of Hong Kong Hong Kong SAR China

5. Department of Chemistry City University of Hong Kong Hong Kong SAR China

6. Institute of Materials Research and Engineering, Agency for Science Technology and Research Singapore Singapore

Abstract

AbstractThe remarkable successes of graphene have sparked increasing interest in elemental two‐dimensional (2D) materials, also referred to as Xenes. Due to their chemical simplicity and appealing physiochemical properties, Xenes have shown particular potential for numerous (opto) electronic, iontronic, and energy applications. Among them, layered α‐phase tellurene has demonstrated the most promise, thanks to the recent successes in the chemical synthesis of highly crystalline 2D tellurene. However, the general electronic and electrochemical properties of tellurene in electrolyte systems remain ambiguous, hindering their further development. In this work, we studied the electrostatic gating, electrocatalysis, and electrochemical stability of tellurene in electrolyte systems. Our results show that tellurene obtained from both hydrothermal and chemical vapor deposition methods, two mainstream synthetic approaches for Xenes, demonstrates thickness‐dependent ambipolar transport with high hole mobility and stability in both aqueous electrolytes and ionic liquids. More importantly, the electrochemical properties of tellurene are investigated via the emerging on‐chip electrochemistry. Pristine tellurene demonstrates hydrogen evolution reaction with low Tafel slopes and remarkable electrochemical stability in acidic electrolytes over a large potential window. Our study provides a comprehensive understanding of the iontronic and electrochemical properties of tellurene, paving the way for the broad adoption of Xenes in sensors, synaptic devices, and electrocatalysis.

Funder

City University of Hong Kong

University Grants Committee

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3