Can single photon excitation of two spatially separated modes lead to a violation of Bell inequality via weak-field homodyne measurements?

Author:

Das TamoghnaORCID,Karczewski MarcinORCID,Mandarino AntonioORCID,Markiewicz MarcinORCID,Woloncewicz BiankaORCID,Żukowski MarekORCID

Abstract

Abstract We reconsider the all-optical weak homodyne-measurement based experimental schemes aimed at revealing Bell nonclassicality (‘nonlocality’) of a single photon. We focus on the schemes put forward by Tan et al (TWC, 1991) and Hardy (1994). In our previous work we show that the TWC experiment can be described by a local hidden variable model, hence the claimed nonclassicality is apparent. The nonclassicality proof proposed by Hardy remains impeccable. We investigate which feature of the Hardy’s approach is crucial to disclose the nonclassicality. There are consequential differences between TWC and Hardy setups: (i) the initial state of Hardy is a superposition of a single photon excitation with vacuum in one of the input modes of a 50–50 beamsplitter. In the TWC case there is no vacuum component. (ii) In the final measurements of Hardy’s proposal the local settings are specified by the presence or absence of a local oscillator field (on/off). In the TWC case the auxiliary fields are constant, only phases are varied. We show that in Hardy’s setup the violation of local realism occurs due to the varying strength of the local oscillators. Still, one does not need to operate in the fully on/off detection scheme. Thus, the nonclassicality in a Hardy-like setup cannot be attributed to the single-photon state alone. It is a consequence of its interference with the photons from auxiliary local fields. Neither can it be attributed to the joint state of the single photon excitation and the local oscillator modes, as this state is measurement setting dependent. Despite giving spurious violations of local realism, the TWC scheme can serve as an entanglement indicator, for the TWC state. Nevertheless an analogue indicator based on intensity rates rather than just intensities overperforms it.

Funder

Foundation for Polish Science ICTQT, IRAP

Foundation for Polish Science

National Science Centre

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open dynamics of entanglement in mesoscopic bosonic systems;New Journal of Physics;2024-05-01

2. CHSH Bell tests for optical hybrid entanglement;New Journal of Physics;2024-03-01

3. Generalization of Gisin’s theorem to quantum fields;New Journal of Physics;2024-02-01

4. Insights into Quantum Contextuality and Bell Nonclassicality: a Study on Random Pure Two-Qubit Systems;International Journal of Theoretical Physics;2024-01-12

5. Revisited aspects of the local set in CHSH Bell scenario;International Journal of Quantum Information;2023-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3