Open dynamics of entanglement in mesoscopic bosonic systems

Author:

Schlichtholz KonradORCID,Rudnicki ŁukaszORCID

Abstract

Abstract A key issue in quantum information is finding an adequate description of mesoscopic systems that is simpler than full quantum formalism yet retains crucial information about non-classical phenomena like entanglement. In particular, the study of fully bosonic systems undergoing open evolution is of great importance for the advancement of photonic quantum computing and communication. In this paper, we propose a mesoscopic description of such systems based on boson number correlations. This description allows for tracking Markovian open evolution of entanglement of both non-Gaussian and Gaussian states and their sub-Poissonian statistics. It can be viewed as a generalization of the reduced state of the field formalism (Alicki 2019 Entropy 21 705), which by itself does not contain information about entanglement. As our approach adopts the structure of the description of two particles in terms of first quantization, it allows for broad intuitive usage of known tools. Using the proposed formalism, we show the robustness of entanglement against low-temperature damping for four-mode bright squeezed vacuum state and beam-splitted single photon. We also present a generalization of the Mandel Q parameter. Building upon this, we show that the entanglement of the state obtained by beam splitting of a single occupied mode is inherited from sub-Poissonian statistics of the input state.

Funder

Fundacja na rzecz Nauki Polskiej

Academy of Finland

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3