Abstract
Abstract
As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits is directly associated with the phenomenon of quantum scarring, which restricts the degree of delocalization of the eigenstates and leads to revivals in the dynamics. Here, we study the Dicke model in the superradiant phase and identify two sets of fundamental periodic orbits. This experimentally realizable atom–photon model is regular at low energies and chaotic at high energies. We study the effects of the periodic orbits in the structure of the eigenstates in both regular and chaotic regimes and obtain their quantized energies. We also introduce a measure to quantify how much scarred an eigenstate gets by each family of periodic orbits and compare the dynamics of initial coherent states close and away from those orbits.
Funder
Consejo Nacional de Ciencia y TecnologÃa
DGAPA-UNAM
National Science Foundation
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献