Controlling many-body quantum chaos: Bose–Hubbard systems

Author:

Beringer LukasORCID,Steinhuber MathiasORCID,Diego Urbina JuanORCID,Richter KlausORCID,Tomsovic StevenORCID

Abstract

Abstract This work develops a quantum control application of many-body quantum chaos for ultracold bosonic gases trapped in optical lattices. It is long known how to harness exponential sensitivity to changes in initial conditions for control purposes in classically chaotic systems. In the technique known as targeting, instead of a hindrance to control, the instability becomes a resource. Recently, this classical targeting has been generalized to quantum systems either by periodically countering the inevitable quantum state spreading or by introducing a control Hamiltonian, where both enable localized states to be guided along special chaotic trajectories toward any of a broad variety of desired target states. Only strictly unitary dynamics are involved; i.e. it gives a coherent quantum targeting. In this paper, the introduction of a control Hamiltonian is applied to Bose–Hubbard systems in chaotic dynamical regimes. Properly selected unstable mean field solutions can be followed particularly rapidly to states possessing precise phase relationships and occupancies. In essence, the method generates a quantum simulation technique that can access rather special states. The protocol reduces to a time-dependent control of the chemical potentials, opening up the possibility for application in optical lattice experiments. Explicit applications to custom state preparation and stabilization of quantum many-body scars are presented in one- and two-dimensional lattices (three-dimensional applications are similarly possible).

Funder

Vielberth Stiftung

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Reference89 articles.

1. On the possibility of extracting energy from gravitational systems by navigating space vehicles;Ulam,1958

2. Trajectories and orbit maneuvers for the ISEE-3/ICE comet mission;Farquhar;J. Astronaut. Sci.,1985

3. The flight of ISEE-3/ICE: origins, mission history and a legacy;Farquhar;J. Astronaut. Sci.,2001

4. Controlling chaos;Ott;Phys. Rev. Lett.,1990

5. Using chaos to direct trajectories to targets;Shinbrot;Phys. Rev. Lett.,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3