The transport properties of Kekulé-ordered graphene p–n junction

Author:

Zhang PeipeiORCID,Wang ChaoORCID,Li Yu-XianORCID,Zhai LixueORCID,Song JuntaoORCID

Abstract

Abstract The transport properties of electrons in graphene pn junction with uniform Kekulé lattice distortion have been studied using the tight-binding model and the Landauer–Büttiker formalism combined with the nonequilibrium Green’s function method. In the Kekulé-ordered graphene, the original K and Kʹ valleys of the pristine graphene are folded together due to the 3 × 3 enlargement of the primitive cell. When the chiral symmetry breaking of a valley leads to a single-valley phase, there are special transport properties of Dirac electrons in the Kekulé lattice. In the O-shaped Kekulé graphene pn junction, Klein tunneling is suppressed, and only resonance tunneling occurs. In the Y-shaped Kekulé graphene pn junction, the transport of electrons is dominated by Klein tunneling. When the on-site energy modification is introduced into the Y-shaped Kekulé structure, both Klein tunneling and resonance tunneling occur, and the electron tunneling is enhanced. Under strong magnetic fields, the conductance of O-shaped and on-site energy-modified Y-shaped Kekulé graphene pn junctions is non-zero due to the presence of resonance tunneling. It is also found that the disorder can enhance conductance, with conductance plateaus forming in the appropriate range of disorder strength.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3