Abstract
Abstract
Spin–orbit interaction is essential to enhance the in-plane upper critical field of two-dimensional superconductors. Here, we report the LaAlO3/KTaO3 (111) superconducting interface (T
c,0 ≈ 0.475 K) with a high in-plane upper critical field (∼1.6 T), which is approximately 1.8 times the Pauli paramagnetic limit. The H
−
T superconducting phase diagram is well-fitted by the Klemm–Luther–Beasley (KLB) theory, and the relevant spin–orbit scattering (SOS) length is approximately 32 nm. Furthermore, normal-state magnetotransport measurements show signatures of weak antilocalization caused by strong spin–orbit coupling in LaAlO3/KTaO3 (111). The spin diffusion length derived from magnetotransport measurements was 40 nm at 2 K, which is comparable with the SOS length. The conformity of the phase diagram with the KLB theory and the consistency of normal state spin diffusion length and superconducting SOS length indicate that the high in-plane upper critical field at the LaAlO3/KTaO3 (111) superconducting interface is enhanced by SOS.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献