Abstract
Abstract
The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (≈14 eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals—both necessary prerequisites for all types of coherent nonlinear spectroscopy.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
H2020 European Research Council
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献