Abstract
Abstract
Interferometric pump–probe experiments in the extreme ultraviolet (XUV) domain are experimentally very challenging due to the high phase stability required between the XUV pulses. Recently, an efficient phase stabilization scheme was introduced for seeded XUV free electron lasers (FELs) combining shot-to-shot phase modulation with lock-in detection Wituschek et al (2020 Nat. Commun.
11 883). This method stabilized the seed laser beampath on the fundamental ultraviolet wavelength to a high degree. Here, we extend this scheme including the stabilization of the XUV beampath, incorporating phase fluctuations from the FEL high gain harmonic generation process. Our analysis reveals a clear signal improvement with the new method compared to the previous stabilization scheme.
Funder
Bundesministerium für Bildung und Forschung
European Research Council
Deutsche Forschungsgemeinschaft
Swedisch Research Council
Knut and Alice Wallenberg Foundation
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献