Abstract
Abstract
Terahertz photoconductive antenna (PCA) is an important device for generating ultrabroadband terahertz radiations, being applicable in various scenarios. However, the metallic electrodes in PCAs, a pair of coplanar strip lines (CSL), always produce horizontal electrode modes in a broad THz band, thus resulting in low directivity in the vertical direction. Here, we introduce spoof surface plasmon polariton (SSPP) structures to suppress horizontal electrode modes in a broad band. The suppression principles are accounted to both the forbidden band of the fundamental SSPP mode and the orthogonality between source and higher-order SSPP modes. In the SSPP-modified PCA, we achieve around 2 dBi higher directivity in the vertical direction compared to a typical CSL PCA. Unlike the narrow bands inheriting from conventional metamaterial resonators, the relative operational band of the SSPP-modified PCA is as broad as 48%. This planar SSPP structure is compatible with the well-developed micro fabrication technologies. Thus, our scheme can be combined with the semiconductor material engineering and plasmonic nanoscale structures for further increasing THz output power.
Funder
National Key Laboratory Foundation of China
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
ZJNSF
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献