Abstract
Abstract
Mutually unbiased bases (MUBs) provide a standard tool in the verification of quantum states, especially when harnessing a complete set for optimal quantum state tomography. In this work, we investigate the detection of entanglement via inequivalent sets of MUBs, with a particular focus on unextendible MUBs. These are bases for which an additional unbiased basis cannot be constructed and, consequently, are unsuitable for quantum state verification. Here, we show that unextendible MUBs, as well as other inequivalent sets in higher dimensions, can be more effective in the verification of entanglement. Furthermore, we provide an efficient and systematic method to search for inequivalent MUBs and show that such sets occur regularly within the Heisenberg–Weyl MUBs, as the dimension increases. Our findings are particularly useful for experimentalists since they demonstrate that a clever selection of MUBs allows for entanglement detection with fewer measurements.
Funder
Austrian Science Fund
ITRC Program
H2020 Marie Skłodowska-Curie Actions
National Research Foundation of Korea
Narodowe Centrum Nauki
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献