Chiral-induced spin selectivity in the formation and recombination of radical pairs: cryptochrome magnetoreception and EPR detection

Author:

Luo Jiate,Hore P J

Abstract

Abstract That the rates and yields of reactions of organic radicals can be spin dependent is well known in the context of the radical pair mechanism (RPM). Less well known, but still well established, is the chiral-induced spin selectivity (CISS) effect in which chiral molecules act as spin filters that preferentially transmit electrons with spins polarized parallel or antiparallel to their direction of motion. Starting from the assumption that CISS can arise in electron transfer reactions of radical pairs, we propose a simple way to include CISS in conventional models of radical pair spin dynamics. We show that CISS can (a) increase the sensitivity of radical pairs to the direction of a weak external magnetic field, (b) change the dependence of the magnetic field effect on the reaction rate constants, and (c) destroy the field-inversion symmetry characteristic of the RPM. We argue that CISS polarization effects could be observable by EPR (electron paramagnetic resonance) of oriented samples either as differences in continuous wave, time-resolved spectra recorded with the spectrometer field parallel or perpendicular to the CISS quantization axis or as signals in the in-phase channel of an out-of-phase ESEEM (electron spin echo envelope modulation) experiment. Finally we assess whether CISS might be relevant to the hypothesis that the magnetic compass of migratory songbirds relies on photochemically-formed radical pairs in cryptochrome flavoproteins. Although CISS effects offer the possibility of evolving a more sensitive or precise compass, the associated lack of field-inversion symmetry has not hitherto been observed in behavioural experiments. In addition, it may no longer be safe to assume that the observation of a polar magnetic compass response in an animal can be used as evidence against a radical pair sensory mechanism.

Funder

H2020 European Research Council

Office of Naval Research Global

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3