Kernresonanz-Emissionslinien während rascher Radikalreaktionen

Author:

Bargon J.1,Fischer H.1,Johnsen U.1

Affiliation:

1. Deutsches Kunststoff-Institut Darmstadt

Abstract

For the detection of unstable intermediates during rapid chemical reactions an experimental technique has been developed which allows tracing of reactions with reaction times of minutes or seconds by nuclear magnetic resonance spectroscopy. By this technique series of NMR spectra were taken during thermal decomposition of peroxides and azo-compounds, and the following unexpected effect was observed: During some reactions the proton resonance lines of reaction products appear intermediately in emission instead of absorption. The emission lines in the decomposition reactions of dibenzoylperoxide and di-p-chlorbenzoylperoxide are treated in detail, and are shown to be due to benzene and chlorobenzene molecules formed in the reactions. Obviously these molecules are formed initially with a negative spin polarization of their proton spin systems which is assumed to be a consequence of a chemically induced dynamic nuclear polarization.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3