Abstract
Abstract
The adsorption of gas molecules (CO, SO) by different atoms (Cu, Fe, Pd, Pt, B, N, P, S) doped graphene has been investigated in terms of adsorption energies, charge transfer, and density of states based on the density functional theory. The Result that the metal atoms enhance the interaction of graphene with the above gas molecules much more than the non-metal atoms, and it is due to this strong interaction that the gas molecules (CO, SO) chemisorb on graphene doped with metal atoms. Meanwhile, the metal atom doped graphene is more sensitive to SO molecules. Moreover, the charge transfer of CO/Pd–G is 0.056e, and the adsorption energy is −6.386 eV, and there is a very large deformation of Pt–G after adsorption of SO and the reaction is very violent, with an adsorption energy up to −7.922 eV and a charge transfer up to 0.537e, which is the highest of all systems. Therefore, we believe that Pt–G is suitable for the detection of the SO while Pd–G is suitable for the detection of the CO. In addition, combined with the nature of the work function, we believe that metal-doped graphene has the potential to be a highly sensitive irreversible sensor.