Abstract
Abstract
A ridge-channel AlGaN/GaN high-electron mobility transistor (HEMT) utilizing selective-area growth and epitaxial lateral overgrowth (ELO) technique is proposed in this work to achieve high-performance normally-off devices. It has a c-plane platform for the source and the drain contacts, and sidewalls of
10
1
ˉ
1
lattice plane for the gate contact. The sidewalls have characteristics of weak polarization and thin barrier, which are advantageous for realizing normally-off operation. Two ridge HEMTs with triangular and trapezoid channel are designed. Theoretical simulation demonstrates a threshold voltage of 0.03 V for the sidewall channel with reduced polarization and barrier thickness, and a threshold voltage of 1.1–1.3 V for the ridge HEMTs assuming no polarization charge in sidewall channel. The ridge-channel device also exhibits high saturation drain current. The ELO-based ridge-channel opens a new way to achieve normally-off AlGaN/GaN HEMT.
Funder
National Natural Sciences Foundation of China
National Key R&D Program of China
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials